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From disks to channels: dynamics of active
nematics confined to an annulus†
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Aparna Baskaran *b and Michael F. Hagan *b

Confinement can be used to systematically tame turbulent dynamics occurring in active fluids. Although

periodic channels are the simplest geometries to study confinement numerically, the corresponding

experimental realizations require closed racetracks. Here, we computationally study 2D active nematics

confined to such a geometry—an annulus. By systematically varying the annulus inner radius and

channel width, we bridge the behaviors observed in the previously studied asymptotic limits of the

annulus geometry: a disk and an infinite channel. We identify new steady-state behaviors, which reveal

the influence of boundary curvature and its interplay with confinement. We also show that, below a

threshold inner radius, the dynamics are insensitive to the presence of the inner hole. We explain this

insensitivity through a simple scaling analysis. Our work sheds further light on design principles for using

confinement to control the dynamics of active nematics.

I. Introduction

Active matter describes a collection of constituents that con-
sume energy at the level of the individual units to generate
motion. Interactions between the units combined with their
motion result in emergent behaviors that span scales much
larger than those of the particles or their interactions, and
would be thermodynamically forbidden in equilibrium
materials.1–3 Suspensions of such active units, termed active
fluids, are a paradigm to describe different biological systems
such as the cytoskeleton of cells,4 bacterial colonies5 and
tissues and cell sheets.6–8 Enabled by the continuous conver-
sion of chemical energy into mechanical work due to bio-
molecular processes, these systems exhibit myriad emergent
functionalities that are crucial for their organisms’ lifecycles,
such as motility, division, self-healing, and morphogenesis.9–14

Active nematic liquid crystals, which are composed of motile
energy-consuming anisotropic units, provide a promising
platform to achieve similar capabilities in synthetic or biomi-
metic systems.15 However, bulk active nematics exhibit chaotic
turbulent-like flows that lack long-range order.16–22 Thus, they
are unable to perform functions such as generating work or

driving net material transport without a means to suppress this
turbulence.

Confinement can control active flows,23–40 and enable har-
nessing them for transport and other functions (e.g. ref. 41–43).
The simplest confinement in 2D is that of an infinite channel of
finite width, computationally implemented using periodic
boundary conditions. It has been shown that, depending
on the channel width and activity level, active nematics in
such channels exhibit a variety of emergent states including
‘dancing’ defect pairs and coherent flow along the channel.37,44

However, in experiments, such a channel can only be mimicked
by physically joining its two ends, leading to a curved racetrack
or annulus geometry,27,45–47 or by finite-length ‘lanes’ in which
end-effects may arise.44,45 For instance, Fig. 1 shows a widely
studied active matter system of cytoskeleton-based 2D active
nematics15,48 confined to an annulus geometry. In bulk,
this system exhibits the widely studied phenomenon of low
Reynolds number turbulence.20,39,42,45,49–55 Experiments in the
annulus geometry46,47 and lane configurations44 demonstrate
that confinement can tame this turbulence to generate ordered
flows. However, despite these experiments and previous
theoretical investigations of active nematics confined in
channels,24,28,37,43,44,56–58 disks,45,46,59,60 and annulus geo-
metries,37,46,47,61,62 the influence of channel curvature and
finite channel length on emergent behaviors is yet to be studied
in detail.

In this work we use hydrodynamic simulations to system-
atically investigate 2D active nematics confined to the annulus
geometry. We vary the confinement shape by changing the
inner radius of the annulus for a fixed width, going from a
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‘disk-like’ annulus, with a small pinhole at its center, to a
‘channel-like’ annulus for which the radius is much larger than
the channel width (Fig. 3). We vary the confinement size by
changing the width of the annulus, and map out a shape-size
phase diagram of the dynamical steady states. This phase
diagram connects the previously observed steady states in disks
and channels, and reveals how the system behaves between
these two limits. In particular, the intermediate geometries
reveal previously unobserved states exhibiting net material
transport, which are stabilized by the positive curvature of the
inner wall of the annulus.

Further, we find that below a threshold inner radius, annuli
exhibit the same dynamics as the corresponding true disks
under a finite parallel anchoring on the nematic director,
despite the two systems having boundary energetics that favor
different topological charges. We provide a theoretical explana-
tion for this observation and an estimate of the threshold
pinhole size based on the competing anchoring and elastic
energies at the hole. Finally, we find that the net-transport state
disappears at high anchoring strengths. To understand these
effects, we study the influence of activity on the boundary layer
at the walls,47,59 which uncovers a relationship between the
anchoring strength and the curvature. More broadly, these
results advance our understanding of how hydrodynamics
and topological constraints of boundary conditions control
the behavior of a confined active nematic.

II. Model description

As in our previous work,59 we study a continuum model of an
active nematic described as a single incompressible fluid with
internal nematic symmetry.15,63 It has two fields: the nematic

tensor order parameter
$
Q ¼ rS½~n�~n� ð1=2Þ

$
I� and a flow field

-
u. Here, -

n is the local orientation unit vector, S is the scalar
order parameter, and r is the density, which we assume to be
uniform and constant in the simulations throughout this
paper. In the limits of low Reynolds number and high Ericksen

number,64 the dynamics of this fluid is given by

Zr2~u�rP� ar �
$
Q ¼ 0 (1)

along with the incompressibility constraint r�-u = 0. Here, Z is
the dynamic viscosity and P is the pressure. The third term is
the leading order contribution from the extensile active stress

�a
$
Q, with a defined as the activity. We use no-slip boundary

conditions on the velocity throughout this article, -
u|boundary = 0.

The dynamical equation for
$
Q is given by

@t
$
Qþr � ð~u

$
QÞ ¼ ð

$
Q �
$
O�

$
O �

$
QÞ þ l

$
Eþ g�1

$
H (2)

Here, Oij = (qiuj � qjui)/2 is the anti-symmetric vorticity tensor,
Eij = (qiuj + qjui)/2 is the symmetric strain rate tensor, and l is
the flow alignment parameter. The final term is the relaxation
of the nematic field proportional to the variation of the nematic
free energy, Hij ¼ �dF=dQij , with dissipation rate g�1. The
nematic free energy for a confined system consists of a bulk
contribution and a boundary contribution.

The bulk contribution is the Landau de Gennes free energy63

FLDG given by

FLDG ¼
ð
O
d2r C �b1

2
QijQji þ

b2
4
ðQijQjiÞ2

� ��

þ 1

2
Kð@kQij@kQijÞ

�
:

(3)

In this work, we take the simple form, b1(r) = r � 1 and b2(r) =
(r + 1)/r2 so as to set up the isotropic (ro 1) to nematic (r4 1)
transition. We fix r = 1.6 throughout this article, thus focusing
on the far-from-critical nematic phase. At the boundary, we use
the Nobili–Durand anchoring energy9,65

FND ¼
þ
@O

dr
1

2
E
0
AðQij �Qb

ijÞðQji �Qb
jiÞ; (4)

where
$
Qb specifies the order and orientation at the boun-

dary and E
0
A specifies the anchoring strength. We use parallel

anchoring throughout this paper, and hence set
$
Qb ¼

ðt̂� t̂�
$
I=2Þ), where t̂ is the local tangent vector to the boundary

and
$
I is the 2D identity matrix. Thus, the relaxation term

becomes

g�1Hij = Dr(b1 � b2QklQlk)Qij + DEqkqkQij � EA(Qij � Qij
b)|qO,

(5)

where DE = K/g, EA = E
0
A=g and Dr = C/g. Note that this molecular

field term should in principle give rise to reaction stresses in
the flow equation. However, for active nematics, the reaction
stress is negligible compared to the active stress.66 Thus, we
consider the simple model given here, where the flow is driven
by active stresses and enters the order parameter equation
kinematically.

We identify the time scale T = 1/Dr and the length scale

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE=Dr

p
. We use these to non-dimensionalize the equa-

tions, with the dimensionless operators �@t ¼ @t=Dr and

Fig. 1 2D active nematics confined to an annulus geometry. (a) Snapshot
of the microtubule-kinesin active nematics system, obtained using
fluorescence microscopy. (b) Snapshot from a hydrodynamic simulation
of the same system. The lines indicate the director field lines while the
color corresponds to the scalar order parameter S. This color-map is used
to indicate S throughout this manuscript unless stated otherwise. The

magenta arrows indicate the positions and orientations of þ1
2

defects.
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�@i ¼ @i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE=Dr

p
. This gives the dimensionless equations

�@t
$
Qþ �r � ð~�u

$
QÞ ¼ ð

$
Q �
$
�O�

$
�O �
$
QÞ þ �l

$
�E þ g�1

$
�H (6)

g�1 �Hij ¼ ðb1 � b2QklQlkÞQij þ �@k �@kQij � �EAðQij �Qb
ijÞj@O;

(7)

�r2~�u� �rP� �a �r �
$
Q ¼ 0 (8)

Here, the dimensionful quantities -
u and P are rescaled to

�~u ¼ ~u
ffiffiffiffiffiffiffiffiffiffiffiffi
DEDr

p
and %P = P/(DrZ). The dimensionful parameters

are rescaled as ĒA = EA/Dr, �l = l/Dr, �a = a/(ZDr) and finally the

system dimensions �R ¼ R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DE=Dr

p
. In the following, we drop

the overbars on the parameters and implicitly assume this
nondimensionalization.

We start the simulations with zero velocity and uniform
director field along a Cartesian axis with 1% noise. We use
the open source Python library FEniCS67,68 to integrate the
equations. The visualizations are made using the open source
visualization software Paraview69 or MATLAB.70 Unless speci-
fied otherwise, we use EA = 0.01 (weak anchoring) and a = a0 = 5
(strong activity) in the simulations. For this activity, the system
reaches steady state within 500 simulation time units even for
the largest geometries investigated. Accordingly, we simulate
all the systems for a total of tf = 1000 time units and use the
data from the last 10% of the time for analysis. If we change

the activity, we scale tf :t
0
f ¼ ða0=aÞtf . For all simulations, we set

dt = 0.1, and we use a mesh with average linear element size
Dx B 0.5, with finer elements near inner holes.

III. Results
A. Steady state behaviors

We specify the size of the annulus by its width W, and its shape
with the ratio of the inner radius to the width, Ri/W. We use
Ri/W values from 0.01 (disk-like) to 3 (channel-like), and widths
in the range WA[4, 30] (see Fig. 2 for some examples). For
completeness, we also simulate active nematic disks and flat
periodic channels. Here, the disk of radius R is thought of as an
‘‘annulus’’ with W = R and Ri = 0, whereas a channel is thought
of as an ‘‘annulus’’ with width W and Ri -N. We thus obtain a
shape-size phase diagram for the 2D active nematic confined to
an annulus (see Fig. 3). We consider weak anchoring (EA = 0.01)
and strong activity (a = 5). The system exhibits distinct dyna-
mical steady-states that vary as a function of the geometric
parameters. Sequences of snapshots characterizing the
dynamics for some of these states are shown in Fig. 2. Fig. 3
gives a phase diagram of the observed steady states.

To aid the classification of the steady-states, we define a
signed order parameter indicating the degree of flow, FðtÞ ¼
~u � êy=j~ujh i following Opathalage et al.45 Using this order para-

meter and other aspects of the dynamics, we categorize the
steady states as follows:

a. Stationary state. A state with a time-independent direc-

tor field and velocity profile @t
$
Q ¼ 0 ¼ @t~u

� �
is labeled as a

stationary state.
Depending on the confinement and anchoring conditions,

we observe different textures of the nematic, which in turn
result in different velocity profiles (Fig. 4). High confinement
and high anchoring strength result in a circular nematic profile
corresponding to the +1 defect anchoring condition, with B0
velocity, as seen in Fig. 4(a). For slightly lower confinement, we

observe the dipolar state with two þ1
2

defects, as also observed

in disks in ref. 59 (Fig. 4(b)). An interesting state occurs at low
anchoring, where the director aquires a spiral configuration,
resulting in a stationary but non-zero velocity, as shown in
Fig. 4(c). This state is also peculiar because it has not been
observed in the experiments to our knowledge. In the opposite
shape limit of the periodic channel (Ri/W - N), we observe a
uniform nematic with no flow.

b. Corotating state. A state with defects revolving around
the center of the annulus in a steady circulation is labeled a
corotating state (see Fig. 2 (bottom) and Movie S1, ESI†).
Another defining property of the corotating state is that its
$
Q and -

u profiles are constant in a rotating (or translating in the
case of straight channels) frame of reference with the appro-
priate angular (or horizontal) speed.

Fig. 2 Dynamical steady states in active nematics confined to annulus
geometries. (top) The circulating state, as observed for W = 10 and Ri/W =
0.1. A single defect going around the channel is shown with a red circle to
highlight the circulation. (middle) The dancing state, as observed for W = 8
and Ri/W = 1. The highlighted region shows the dancing behavior of a
defect pair over time. (bottom) The corotating state, as observed for W = 6
and Ri/W = 1. The highlighted defect shows the corotating motion of the
train of defects. The symbols correspond to those used to identify these
states in the phase diagram in Fig. 3. The color represents the scalar order
parameter S with the same color-map as in Fig. 1. All times start at an
arbitrary point and are in the units of 0.1 simulation times.
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This state occurs upon moving to weaker confinement by
increasing W from the stationary state, and is robust to initial

noise. The þ1
2

defects in this state always nucleate from the

inner wall of the annuli. This is distinct from the straight
periodic channel of the same width, where the bend-
instability occurs from both boundaries resulting in a structure
that is symmetric across the channel, although also with a
spontaneously chosen circulation direction (see Movie S2,
ESI†). The weak anchoring strength at the boundary allows

for the corresponding �1
2

defects at the wall to exist. Thus, this

state is natural for Neumann boundary conditions on
$
Q with no

anchoring. Fig. 3 shows that the corotating state occurs for a
narrow range of W, with phase boundaries that are essentially
independent of Ri. This reflects the fact that the corotating state

occurs when only a single þ1
2

defect can form across the

narrowest confinement dimension (channel width in this case).59

The simplest corotating state is observed at very small inner

radii and consists of two þ1
2

defects rotating around the center

and no �1
2

defects.45,59 Notably, this state is consistent with the

net topological charge of +1 imposed by parallel anchoring in a
true disk, but deviates from the net topological charge of 0 for
an annulus. This indicates that, despite changing the topology
(in the limit of infinite anchoring strength), inserting a hole at
the center of the disk does not affect the steady-state behavior
below a threshold radius. As will be discussed in Section III.B,
the threshold size of the hole is expected to depend on the

anchoring strength. For slightly larger inner radii, the �1
2

defects at the inner wall are stabilized by weak anchoring
conditions and/or the inner curvature. Thus, the corotating
state is absent for low inner curvatures (high Ri) when the
anchoring strength is high (discussed in Section III.C).

c. Circulating state. A state with net circulation (F(t)
remaining far from 0 and not changing sign, see Fig. 5 and
Movie S3, ESI†) but with steady nucleation and annihilation of
defects is labeled a circulating state (see Fig. 2 (top)). This is
unlike the corotating state where the defects, once formed,
remain in motion without annihilating. However, the circulating
and corotating states have similar vortex structures, with high
circulation around a central vortex, albeit with significantly larger

Fig. 3 Shape-size phase diagram for active nematics in annuli. Steady
states as a function of width W and the ratio of the inner radius to width
Ri/W: (i) Stationary state (meaning @t

$
Q ¼ 0 ¼ @t~u, grey diamonds),

(ii) Corotating state (green circles), (iii) Circulating state (indigo thin
diamonds), (iv) Dancing state (blue triangles), and (v) Chaotic state
(magenta pluses). The indicated shapes for various Ri/W on the top are a
guide to the eye and not to scale. Ri/W = 0 corresponds to a disk of radius
W, whereas Ri/W = N corresponds nominally to a channel simulation with
width W, length 20W, and periodic boundary conditions at the channel
ends. For these simulations, we apply a no-slip boundary condition for the
velocity, and weak parallel anchoring for the director, with EA = 0.01. The
dashed grey lines are drawn manually as a guide to identify the approxi-
mate boundaries between different steady-state behaviors.

Fig. 4 Various stationary states @t
$
Q ¼ 0 ¼ @t~u

� �
of active nematics

observed in disk-like annuli. The left panel shows the director field with
streamlines and the scalar order parameter S with the color. The right
panel shows the corresponding flow field, also shown as directed stream-
lines and the vorticity |r � u

-
| with the color. (a) State with u

-
B 0 (|r � u

-
|

B 10�3) and the director in a + 1 defect configuration. Here, EA = 3, W = 4,
Ri/W = 0.1. (b) Dipolar state with two defects and u

-
B 0 (|r � u

-
| B 10�3),

as also observed in disks in ref. 59. Here, EA = 1, W = 4, Ri/W = 0.01. (c) For
low anchoring strength, we can observe a spiral configuration of the
nematic, with a non-zero but constant velocity (u

-
a 0, qtu

-
= 0). Here,

EA = 0.01, W = 4,Ri/W = 0.1.
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perturbations of the velocity profile in the circulating state
(see Fig. 5). This state occurs upon increasing the width of the
annulus in the disk-like limit (Ri/W t 0.1). This state is robust
to initial noise in the nematic director, and the circulation is long-
lived (see Fig. 5 and Movie S4, ESI†).

d. Dancing state. A state with pairs of defects swimming
along vortices, as extensively characterized in Shendruk et al.37

(see Fig. 2 (middle) and Movie S5, ESI†).
This state, occurring for intermediate widths and relatively

small curvatures, has been well studied in the channel
geometry.28,37,44 Here, pairs of �1/2 defect pairs swim on a
lattice of vortices along the channel. We find that the dancing
state persists for annular channels even with high curvature
(Ri/W B 0.1, see Fig. 3) as also noted in ref. 37.

In the limit of low curvature (Ri/W \ 1), the dancing state
in the annulus closely resembles that observed in straight
channels. In particular, there is usually an equal number of

þ1
2

defects traveling in each direction along the channel axis,

resulting in no net flow. This symmetry can be broken by

formation of a ‘drift-lattice defect’,37 where two more þ1
2

defects travel in one direction than the other, resulting in a
net drift. The probability of having such drift-lattice defects
increases with the length of the channel37 or correspondingly
the annulus circumference. However, at high curvatures,
Ri/W t 1, the difference in the outer and the inner curvature

results in an asymmetry between the �1
2

defects at those

respective boundaries. This sometimes results in an asymmetry

in the interactions of the �1
2

defects with clockwise or anti-

clockwise moving þ1
2

defects. The defects moving in one direction

interact strongly with the outer �1
2

defects, which slows their flow,

whereas the defects traveling in the other direction move freely.
This results in a net ‘curvature-induced drift’, even with the same

number of defects moving in each direction (see Fig. 6 and Movie
S6, ESI†). This behavior is unique to the annulus.

e. Chaotic state. A state exhibiting proliferation (steady
nucleation and annihilation) of defects, with no net flow
(hF(t)i = 0) is labeled a chaotic state. This state occurs above
a threshold width, whose value depends on the curvature.

f. Arrested bend instability. A state with the nematic
undergoing bend instability, but unable to flow or exhibit the
dancing pattern due to high confinement.

B. Sensitivity to topology

The similarity between the steady-states in the disk and pinhole
annuli discussed for the corotating state extends to all widths
(Fig. 3). That is, the steady state dynamics are insensitive to the
presence of a pinhole below a threshold value of the inner
radius. The origin of this insensitivity can be understood
from the following. First, near the pinhole, the energy cost
for a uniform director (resulting in the insensitivity) goes as
Euniform B EARi, whereas the energy for a perfectly anchored
(+1 defect) structure goes as Edefect B K log(rmax/Ri), where rmax

is a characteristic defect spacing or confinement size.71 The
pinhole will only affect the topology of the director field if
Euniform 4 Edefect. Thus, for a pinhole that is smaller than a
threshold size, which depends on EA, the director structure will
be indistinguishable from that of a disk. We note that this
threshold size is similar to the de Gennes–Kleman extrapola-
tion length ldGK = K/EA. The de Gennes–Kleman length for a flat
wall is explained as follows. For finite anchoring strengths, the
orientation at the boundary wall differs from the preferred
orientation. If the orientation profile near the boundary is
extrapolated beyond the wall, the preferred value is obtained
on a ‘virtual wall’ at a distance ldGK away from it.71 For a

Fig. 5 Distinction between the corotating and the circulating states.
(a) Average azimuthal speed (u

-�ŷ) as a function of time for a representative
corotating state (blue dashed line, Ri = 6, W = 6) and a circulating state
(orange continuous line, Ri = 1, W = 10). While both have a steady
circulation on average, there is significant variation in the instantaneous
flow of the circulating state, as opposed to the weakly sinusoidal variation
in the corotating state (the inset shows a zoomed-in plot of the same).
(b) Total number of defects as a function of time for the same two datasets.
The number of defects remains constant for the corotating case,
whereas it fluctuates for the circulating case, indicating annihilation and
proliferation.

Fig. 6 Curvature-induced drift in the dancing state for W = 15 and Ri/W =
0.3. In this case, due to the asymmetry of the inner and outer curvature,
the flow acquires a drift (see Movie S6, ESI†) despite there being an equal
number of defects moving in each direction. The dotted green line high-
lights the trajectory of a defect moving uninterrupted anti-clockwise, while
the red dotted line highlights the trajectory of a defect moving clockwise,
undergoing annihilation and nucleation periodically at the outer edge. This
asymmetry of defect motions creates a net flow in the counter-clockwise
direction.
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circular hole of size much larger than ldGK, the preferred
anchoring, and thus the preferred topology still gets set by
the virtual wall, whereas for holes smaller than ldGK, the
anchoring is ineffective.72 Our energetics calculation provides
an similar scaling via the implicit relation Ri/log(rmax/Ri) 4
K/EA = ldGK. Second, in the annulus, the no-slip boundary
condition on the fluid at the boundary of the hole imposes
zero fluid velocity. While this requirement is absent in the disk,
the symmetry of the corotating state results in a vanishing
velocity at its center. Thus, the vortex structures of the disk and
annulus with small Ri are very similar. These two effects
combine to make the system dynamics topologically insensitive
to the pinhole.

C. Effect of anchoring strength

The results described thus far have focused on a relatively weak
anchoring strength EA = 0.01. Fig. 7 shows a corresponding
phase diagram for EA = 3. The key differentiating feature of this
phase diagram is that the corotating state disappears in the
straight-channel limit. In this regime, as W increases, the
system transforms from a uniform nematic with azimuthal
orientation, to an arrested bend instability, and then to the
dancing state. This can also be seen by increasing the anchor-
ing strength for a fixed W and Ri (Fig. 8). We note this
observation is similar to results from simulations of polar
active fluids confined to channels, where coherent transport
through the channel is suppressed at high anchoring
strengths.73 This suggests that it should be explainable by a
simple argument. To this end, we note that the altered phase
diagram in our system reflects that the formation of the
corotating state in the channel limit requires two conditions:
a width that accommodates only one defect (W � ‘d, with

‘d 	
ffiffiffiffiffiffiffiffiffi
K=a

p
being the mean distance between defects20) and a

sufficiently small energy cost to form the corresponding �1
2

defects at the inner wall. Above a threshold value of EA, this
energy cost is too large for channel-like annuli, and thus the
bend instability is arrested before defect nucleation can occur.

For smaller inner radii, �1
2

defects are stabilized by the curva-

ture of the inner wall and thus incur a smaller energy.
Moreover, in the disk-like limit Ri/W t 0.1, the corotating state

forms without any �1
2

defects. Hence, the corotating state

emerges at smaller inner radii.
To understand the effect of the anchoring strength on the

phase behavior and in particular on the existence of the
corotating state, we investigated how the penetration length
of the parallel anchoring boundary condition depends on
control parameters in an active nematic. To this end, we
performed simulations in a square channel geometry, with
dimensions 200 � 200, periodic boundary conditions in the y
direction and parallel anchoring boundary conditions in x (see
Fig. 9). Note that this domain is much larger than the systems
investigated in Fig. 3, and the active nematic exhibits turbulent-
like behavior everywhere except near the vertical boundaries.

To quantify the effect of anchoring in this system, Fig. 9
shows the extent to which the alignment with the vertical wall
persists into the channel interior. In particular, we have plotted
h|ny|iy,t as a function of x, where |ny| is the magnitude of the
vertical component of the director field, and the average is
performed over the vertical dimension y and time t. Strong
parallel anchoring implies |ny(x = 0)| E 1, whereas in the bulk
we expect a uniform distribution of ny, yielding h|ny|iy,t(x c 1) =
h|sin y|i = 2/p E 0.64. For convenience, we define a parameter
indicating the fractional drop in h|ny|iy,t from 1 towards the

bulk value 2/p as DnyðxÞ ¼
1� jnyj

	 

y;t
ðxÞ

1� 2=p
.

As shown in Fig. 9, we observe that the variation of h|ny|iy,t

away from the vertical wall exhibits two characteristic length

Fig. 7 Phase diagram for strong anchoring conditions (with EA = 3.0). The
markers correspond to the same states as in Fig. 3: (i) stationary state
(grey diamonds), (ii) corotating state (green circles), (iii) circulating state
(indigo thin diamonds), (iv) dancing state (blue triangles), and (v) chaotic
state (magenta pluses), except for the maroon upward triangles that
indicate the arrested bend instability state. This phase diagram reveals
the absence of the corotating state (green circles) for high anchoring and
low curvature.

Fig. 8 The corotating state disappears at high anchoring strengths. Snap-
shots of the steady state for W = 6, Ri/W = 1 for different anchoring

strengths. (left) For low anchoring strengths, the �1
2

defects are easier to

form and we observe the corotating state. (middle) For intermediate
anchoring, the bend instability is arrested. (right) For high anchoring
strengths, the bend instability is completely suppressed. The width for
the onset of the dancing state remains independent of anchoring strength.
The color represents the scalar order parameter S with the same color-
map as in Fig. 1.
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scales. First, there is a plateau within which the director is
parallel to the wall h|ny|iy,t E 1, followed by an exponential
decay to its bulk value. We define the width of the plateau
region, xp, as the distance from the wall at which alignment
diminishes by 5%, Dny(xp) = 0.05, and the decay length xd as the
distance corresponding to 50% of the alignment decrease,
Dny(xd) = 0.5 (see Fig. 9(b)).

We find that the overall decay length is primarily deter-
mined by activity. In particular, both the plateau width xp and
decay length xd increase linearly with the active length scaleffiffiffiffiffiffiffiffiffi
K=a

p
20 and thus diminish with increasing activity. In contrast,

xd is essentially independent of anchoring strength, while xp

increases moderately with EA until saturation (Fig. 9(c, d) and
10). We now compare the value of xp with the channel width for
the corotating state, W = 6 (see Fig. 9(e) and points (i–iii) on
Fig. 9(d)). For the corotating state at W = 6 and EA = 0.01, xp E
0.5, whereas for EA = 1, xp E 1.86. For the higher anchoring
strengths, the plateau region covers roughly 60% of the entire
annulus, thus hindering defect formation, whereas for the
lower anchoring case, it covers only B15% of the annulus,
thus allowing for defect nucleation. Importantly, the anchoring
boundary layer only affects the director profile and not the
velocity profile. A similar (no-slip) layer in the velocity profile

would have merely shifted the width value at which the corotating
state occurs, as opposed to eliminating it. These observations thus
directly explain the findings in Fig. 8. We also note that the
absence of the corotating state at strong anchoring is consistent
with the absence of this state in the study of exact coherent
structures for active nematics in channels in ref. 58, which was
performed with strong homeotropic anchoring conditions. More
broadly, the small value of xp for high activities explains the
observations from this work and Norton et al.59 that strongly

Fig. 9 The effects of anchoring are renormalized by activity. (a) Snapshot of a simulation with a = 5 and EA = 3. The 200 � 200 box has periodic
boundary conditions in the y direction and parallel anchoring with strength EA in the x direction. The color shows |ny|. (b) h|ny|i as a function of x for the
steady state, averaged over time and y for various activities, each for low (solid lines) and high (dashed lines) anchoring cases. The dotted lines indicate the
thresholds for the definition of the alignment plateau length xp and decay length xd. We only show symbols for some data points to aid visibility. (c) xp vs.
EA for four different activities. The shaded region indicates the standard error. (d) xp as a function of the active length scale

ffiffiffiffiffiffiffiffiffi
K=a

p
, for various anchoring

energies. The data in this plot is same as that in (c), with the anchoring energies increasing with the darkness of the lines. Points marked (i), (ii) and
(iii) highlight specific parameter sets. (e) Steady states obtained using the parameters in (d) (i), (ii), and (iii). The color represents the scalar order parameter
S with the same color-map as in Fig. 1.

Fig. 10 Alignment decay length xd as a function of activity and anchoring
strength. Plots of xd (defined in Fig. 9) as a function of (a) anchoring
strength and (b) the active length scale, analogous to Fig. 9(c) and (d),
indicating that xd is independent of the anchoring strength. The legend
used in (a) and (b) is identical to that of Fig. 9(c) and (d) respectively.
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confined active nematics are insensitive to topological con-
straints, and that the anchoring effects are restricted to a
narrow region near the boundary.

We note that the plateau and decay lengths defined here are
different from the de Gennes–Kleman extrapolation length
ldGK B K/EA.71,72 As discussed earlier, ldGK measures the
distance away from the boundary to a virtual wall where the
preferred orientation is obtained. This length decreases with
increasing anchoring strength. In comparison, xp directly mea-
sures the strength of anchoring at the boundary against
the non-equilibrium effects of the activity by measuring its
influence into the bulk and increases with EA (Fig. 8(c)). Simi-
larly, xd measures the distance from the boundary into the bulk
where turbulent effects become dominant, and thus measures

the defect spacing
ffiffiffiffiffiffiffiffiffi
K=a

p
, and is independent of EA (Fig. 9).

IV. Discussion

Using an annulus confinement, we simulate the natural peri-
odic boundary conditions one can build in experiments, while
studying the role of curvature in the steady state dynamics.
We map a shape-size phase diagram for annular active
nematics. At high confinement, we observe a set of stationary
states (meaning that the director field and velocity profiles are
independent of time, see Section III.A). As we progressively
reduce confinement or increase activity, we find four distinct
dynamic steady states as follows. First, we observe a corotating
(coherently-flowing) state with a train of defects that are

stabilized by the �1
2

defects staying near the inner curved wall.

This state is unique to the annulus geometry. Second, we
observe a circulating state, which exhibits a vortex structure
similar to a corotating disk state but with significant perturba-
tions. Third, we observe the dancing state that is well known to
occur in channel-like geometries.37 However, within this
regime we observe a behavior that is unique to the annulus
geometry, in which the curvature of the inner wall drives and
asymmetry of defect motions in opposite directions, leading to
a net ‘curvature-induced drift’. Finally, at low confinement or
high activity we observe a chaotic state.

We observe that a sufficiently small hole in the disk, while
changing the topology, does not change the dynamical steady
state of the active nematic. We present a scaling analysis that
suggests that this threshold results from a competition between
the anchoring energy and elastic energy of the nematic.
Consistent with this analysis, the threshold pinhole size below
which the system dynamics is insensitive to topology decreases
with increasing anchoring strength. Thus, the behavior of a
pinhole annulus can be globally switched by tuning the bound-
ary anchoring or its geometry (pinhole size). Lastly, we also
explore the effect of boundary anchoring on the steady states,

finding that a large anchoring strength destabilizes the �1
2

defects in the corotating state. Probing the influence of the
anchoring on the boundary layer in bulk systems, we find that
activity depletes the boundary layer. This finding explains a

previous observation that the director fields of active nema-
tics confined in disk geometries are insensitive to boundary
conditions,59 and furthermore extends that analysis to addi-
tional geometries. Similar analyses can be applied to any
geometry in which topological constraints imposed by the
boundaries complete with the preferred global arrangement
of the director field.

We note that our model does not capture all the states that
are observed in experiments of microtubule-kinesin active
nematics in annulus geometries.74 Additional features of the
experimental system that could be added to the model include
the following. In the experiments the microtubule nematic
floats at an oil–water interface and is thus coupled to two
isotropic fluids, while the theory approximates the system as
a single component fluid. While the no-slip velocity boundary
conditions of the theory are consistent with the oil/water fluid,
the microtubules can slip at the boundaries. Further, the
microtubule bundles have finite thickness and length, and
thus can act as material lines that exert non-local forces.45

In the continuum model, the director field only exerts stress
locally. Extending the model to incorporate these effects could
address the discrepancies between theory and experiment.

Finally, while this work has focused on 2D confinement of
active nematics, recent theoretical studies have identified a rich
set of steady states in 3D channels.27,28,57,75 It would be of great
interest to extend the present analysis to toroidal geometries,
to understand how the results we have found on the inter-
play between activity, curvature, and topology are affected by
dimensionality.
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Appendix

Appendix A: Defect detection and
tracking

To locate the defects, we compute a map of the signed winding
number w ¼ 1=ð2pÞ

H
ry � d~s at every point in space59,76 with an

integration ring of radius of 5 pixels. The winding number is
zero everywhere except at the defect locations.77,78 To eliminate
spurious defects, we filter out regions with a non-zero winding
number that are smaller than 60 squared pixels in area.

To plot the defect trajectories in Fig. 6, the þ1
2

defects

are tracked using the open source software Trackpy79 using a
search_range value of 20 pixels. The trajectories thus obtained
are further filtered with a threshold of minimum three frames
of survival.
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Appendix B: Finite element method
implementation

The meshes used for the simulations are generated using the
mshr library from FEniCS. This library allows to generate
meshes with a given domain and an expected resolution, but
ensures that tighter boundaries have finer elements. In Fig. 11,
we show a close-up of the mesh with Ri = 1 to show this property
of the mesh. This adaptive mesh enables us to maintain
sufficient accuracy while using a relatively low resolution of
Dx B 0.5 in the bulk.

The Q-tensor is defined using a vector function space with
continuous piecewise linear elements from the Lagrange
family. The standard Taylor–Hood elements (a vector function
space of continuous piecewise quadratics and a function space
of continuous piecewise linears) are used for the flow field and
pressure. At each time-step, the director is evolved forward
using an implicit backward-Euler scheme using a nonlinear
variational solver. Then, the Stokes equation with activity is
solved using the resulting director using a Krylov solver with an
AMG preconditioner.

Appendix C: Supplementary movies

In all the movies, the yellow to violet colorbar corresponds to
the scalar order parameter S, as in Fig. 1, unless stated other-

wise. Similarly, magenta arrows indicate þ1
2

defects while cyan

trefoils indicate �1
2

defects.

Movie S1: a representative movie of the corotating state for
EA = 0.01 Ri/W = 1 and W = 6.

Movie S2: the corotating state occurring in a flat channel for
W = 6.

Movie S3: a representative movie of the circulating state for
EA = 0.01 Ri/W = 0.1 and W = 10.

Movie S4: the same simulation as in Movie S3 (ESI†), but
also displaying the flow field to show the circulation.

Movie S5: a representative movie of the corotating state for
EA = 0.01 Ri/W = 1 and W = 10.

Movie S6: curvature-induced drift, observed for EA = 0.01
Ri/W = 0.3 and W = 15, corresponding to Fig. 6. All the labels are
same as in Fig. 6.
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